Journal of Chromatography, 324 (1985) 87-111 Elsevier Science Publishers B.V., Amsterdam — Printed in The Netherlands

CHROM. 17 557

SEPARATION ET IDENTIFICATION PAR CHROMATOGRAPHIE EN PHASE GAZEUSE ET CHROMATOGRAPHIE EN PHASE GAZEUSE-SPECTROMETRIE DE MASSE DE COMPOSES AZOTES D'UNE HUILE LOURDE DESASPHALTEE

EVOLUTION DE LEUR DISTRIBUTION APRES UN HYDROTRAITEMENT CATALYTIQUE

I. IGNATIADIS^{*}, J. M. SCHMITTER et P. ARPINO Laboratoire de Chimie Analytique Physique, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau (France) (Reçu le 14 janvier 1985)

SUMMARY

Separation and identification by gas chromatography and gas chromatography-mass spectrometry of the nitrogen compounds from a deasphalted heavy oil. Evolution of their distribution after a catalytic hydrotreatment

Basic and neutral nitrogen fractions were selectively isolated from a deasphalted heavy crude oil and were characterized by gas chromatography and gas chromatography-mass spectrometry.

Most chromatographic peaks were identified. Basic substances included C_{5-10} -alkylpyridines, C_{1-9} -alkylquinolines and C_{1-4} -alkylbenzoquinolines; neutral fractions comprized C_{0-4} -alkylcarbazoles and C_{0-4} -alkylbenzocarbazoles. Only a few specific structures were isolated compared to the large total number of possible isomers. Pseudo-homologous series were recognized, a noticeable example is that of 8-isopropylalkylquinoline.

These results were compared to the distribution of nitrogen substances from this sample after a catalytic hydrotreatment. Alkylpyridines totally disappeared, whereas C_{1-7} -alkylanilines were found. Identification of specific pseudo-homologous series of nitrogen substances in the hydrotreated sample confirm previous results on the resistance to hydrogenation of carbazoles and azaarenes bearing a methyl substituent in α position to the nitrogen atom.

INTRODUCTION

Dans le contexte économique actuel et surtout en raison de l'épuisement des ressources en pétrole, la valorisation des coupes lourdes, des résidus et des bruts lourds "non conventionnels" est devenue une nécessité. Les programmes de valorisation mettent en jeu des processus chimiques de conversion, comme le craquage des fractions lourdes ou légères (craquage thermique, catalytique et hydrocraquage) et des traitements d'épuration et de finition (traitements alcalins et d'adoucissement, hydrotraitements pour l'élimination des hétéroatomes, etc.) afin que les produits pétroliers atteignent les spécifications requises pour leur utilisation comme base pétrochimique ou comme carburants.

Les composés hétéroatomiques azotés sont en grande partie responsables d'un certain nombre de problèmes rencontrés lors du raffinage, car ils affectent particulièrement la couleur, l'odeur et le pouvoir corrosif, forment des gommes et dépôts lors du stockage^{1,2}, nuisent par pollution et désactivent les catalyseurs de craquage et reformage catalytique³⁻⁵.

La réussite des programmes de valorisation dépend donc de l'optimisation des méthodes visant à se débarrasser des composés hétéroatomiques azotés (hydrodéazotation, HDN). Ces méthodes nécessitent la mise au point de catalyseurs industriels performants en même temps que des études approfondies de la structure des composés azotés.

Cependant, l'étude de ces composés se rattache à d'autres domaines d'application, tels que (a) la production de pétrole dans les programmes de récupération assistée⁵, (b) la géochimie organique, car la connaissance de leurs structures et de leur distribution dans les bruts peut contribuer à émettre des hypothèses sur leur génèse et la formation de la matière organique sédimentaire⁶⁻¹⁰ et (c) l'environnement, un certain nombre de ces composés étant toxiques et plusieurs des aza-hétérocycles et amines aromatiques primaires étant des cancérogènes et/ou mutagènes¹¹⁻¹⁵.

Les composés azotés hétérocycliques sont généralement classés en trois catégories: les azotés basiques (dérivés de la pyridine: I, ou azaarènes), les azotés nonbasiques (dérivés du pyrrole: II) (cf. Schéma 1), et les porphyrines. Les deux premières classes se différencient nettement par leurs propriétés chimiques; leurs propriétés acido-basiques sont mises à profit dans les processus d'extraction sélective à partir de pétroles bruts ou de produits pétroliers.

AZOTES BASIQUES

AZOTES NON BASIQUES

Dérivés de la pyridine Schéma 1. Dérivés du pyrrole

Dans le présent rapport, les composés azotés basiques et non basiques sont étudiés dans deux échantillons: DAO R0: huile brute de Boscan (Vénézuela), désasphaltée au pentane; DAO R16: échantillon hydrotraité du RAO R0. L'analyse des composés azotés (basiques et non basiques) extraits sélectivement de ces échantillons est effectuée au moyen de la chromatographie en phase gazeuse sur colonnes capillaires (CG), de ses techniques (dérivations, co-injection de substances de référence), et de son couplage avec la spectrométrie de masse (CG-SM). Le but de cette investigation est de mettre en évidence les structures, l'abondance et la distribution relative des composés azotés de l'huile désasphaltée, et de suivre leur évolution dans l'échantillon hydrotraité.

L'intérêt de ce type d'étude apparait dans des travaux récents^{9,16-20}, qui mettent en évidence l'influence des hydrotraitements catalytiques sur la distribution des composés azotés.

L'échantillon étudié ici représente un cas difficile de valorisation de brut non conventionnel, en raison d'une très forte viscosité ainsi que d'une teneur très élevée en azote et métaux (cf. Tableau I et lit. 21).

PARTIE EXPERIMENTALE

Echantillons

DAO R0 est une huile désasphaltée au pentane provenant du pétrole brut de Boscan (Vénézuela). Le pétrole brut de Boscan est peu évolué sur le plan géochimique, biodégradé mais non particulièrement immature (Eocène). Il est classé parmi les huiles "non conventionelles" pour le raffinage à cause de sa très grande viscosité cinématique et de sa teneur élevée en asphaltènes, Ni et V et en composés hétéroatomiques soufrés, azotés et oxygénés²¹.

DAO R16 a été obtenu après hydrotraitement catalytique de DAO R0 à 380°C sous pression d'hydrogène de 100 bars, le catalyseur utilisé étant un catalyseur de démétallation peu hydrogénant.

Certaines caractéristiques physiques et la composition en hétéroatomes, résines et asphaltènes de deux échantillons sont indiquées dans le Tableau I.

	DAO RO	DAO RI6
Densité à 20°C		
(g/cm ³)	0,981	0,940
Viscosité à 20°C		
(cst)	116	31,6
Soufre (% poids)	4,32	2,54
Azote (ppm)	4200	4400
Nickel (ppm)	62	13
Vanadium (ppm)	585	68
Carbone Conradson		
(% poids)	9,5	6,3
Résines à l'isopropanol		
(% poids)	18,10	7,90
Asphaltènes au n-C7		
(% poids)	1,8	0,5-0,6

TABLEAU I

CARACTERISTIQUES ET COMPOSITION DES ECHANTILLONS DAO RO ET DAO R16

Solvants et adsorbants

Les solvants utilisés sont de qualité "pour analyse" Merck (Darmstadt, R.F.A.) ou Carlo Erba (Milan, Italie) et sont distillés avant utilisation.

Les adsorbants utilisés (Merck) sont: de la silice 63-200 μ m, de l'alumine 90 neutre 63-200 μ m, de la silice greffée RP-18 40-63 μ m.

Extraction des composés azotés basiques

La méthode d'extraction au moyen d'une silice modifiée par HCl a été décrite précédemment²². Une quantité d'échantillon de 10–50 g est utilisée pour une quantité de 100 g de silice traitée par HCl.

La fraction basique totale ainsi extraite est ensuite débarrassée des composés les plus lourds (plus de 5 cycles aromatiques, asphaltènes, porphyrines etc.) par purification en chromatographie liquide (CL) en phase inversée (silice greffée C₁₈, Li-Chrospher RP-18, particules de 10 μ m, colonne de 30 × 1 cm, éluant: CH₃CN-H₂O-NH₄OH (85:15:0,1), à 2 ml/min, détection: UV 254 nm). La fraction ainsi obtenue (composés ayant entre 1 et 5 cycles aromatiques et un poids moléculaire entre 80 et 450) peut être analysée en chromatographie en phase gazeuse (CG) sur colonne capillaire et son couplage avec le spectromètre de masse (CG-SM).

Extraction des composés azotés non basiques

Le processus d'extraction des dérivés du carbazole comporte cinq étapes de séparations chromatographiques successives sur silice modifiée par HCl (extraction des bases azotées), sur silice modifiée par KOH (extraction des acides carboxyliques), sur alumine (extraction des hydrocarbures saturés et polyaromatiques), sur silice modifiée par KOH (extraction des acides faibles) et sur alumine. Les détails de ce protocole d'extraction ont été récemment publiés^{18,23}.

Chromatographie en phase gazeuse et son couplage avec la spectrométrie de masse

Les colonnes capillaires sont préparées au laboratoire suivant les méthodes décrites précédemment²⁴. Les phases stationnaires OV-73 (5,5% phényl, 94,5% méthylsilicone) et OV-61 (33% phényl, 66% méthylsilicone) se sont revélées les plus intéressantes pour cette étude²⁵.

Les chromatographes utilisés sont un Perkin-Elmer modèle Sigma 3, équipé d'un détecteur à ionisation de flamme (FID), un Perkin-Elmer modèle 3920 B équipé de deux détecteurs FID et NPD (détecteur thermoionique spécifique de l'azote et le phosphore) et un Varian modèle 3770 équipé de deux détecteurs FID et ECD (détecteur à capture d'électrons). Pour le couplage CG-SM, un chromatographe Varian modèle 2700 est couplé avec un spectromètre de masse Du Pont modèle 21-492 B. Un système Du Pont modèle 094B-2 est utilisé pour l'acquisition des données et leur exploitation.

Dérivations

Pour différencier les amines aromatiques primaires (anilines) des alkylpyridines de même poids moléculaire et des alkylquinoléines l'acétylation de fraction azotées basiques est effectuée avec l'anhydride acétique en solution dans le chlorure de méthyliène à 70°C pendant 30 min^{26,27}. Pour accroître la réponse du ECD les amines aromatiques des fractions azotées basiques sont dérivées avec l'anhydride heptafluorobutyrique en solution dans le chlorure de méthylène²⁸.

La perméthylation de fractions azotées non-basiques est obtenue suivant la méthode précédemment décrite²³. Elle permet de déceler la présence des substances non dérivables [polaires non azotés ou polluants (phtalates)].

Composés de référence

L'identification complète de composés individuels est obtenue par co-injection en CG, sur trois phases stationnaires, de composés de référence.

Les azaarènes non substitués, les anilines méthylées et le carbazole sont disponibles commercialement: Merck, Aldrich (Beerse, Belgique) et Fluka (Buchs, Suisse).

Certaines alkyquinoléines et alkylbenzoquinoléines ont été synthétisées^{6,26}.

Les méthyl- et diméthylcarbazoles nous ont été donnés par le Dr. Kuroki (Saitama, Japon), les benzocarbazoles non substitués par le Dr. Périn (Orsay, France).

RESULTATS ET DISCUSSION

L'examen du Tableau I permet de constater dans l'échantillon hydrotraité DAO R16, d'une part, une baisse de viscosité et de densité, d'autre part, une diminution de la teneur en résines, asphaltènes, nickel, vanadium, carbone Conradson et soufre (hydrodésulfuration = 41,2%). Cependant, il y a quasi conservation de la teneur en azote.

L'analyse de ces deux échantillons est présentée en deux parties séparées suivant la classe de composés azotés (basiques et non basiques) pour permettre de comparer aisément les abondances relatives et de suivre l'évolution des distributions au sein d'une même classe. Les distributions des hydrocarbures polyaromatiques azotés suivant leur nombre Z sont déterminées par CG-SM assistée par ordinateur, en utilisant la formule généralisée $C_nH_{2n+Z}N$.

Composés azotés basiques

Echantillon DAO R0. La caractérisation de cette fraction au moyen de la CG et CG-SM montre que les composés ont entre 1 et 4 cycles aromatiques (correspondant à un poids moléculaire de 140 à 300 et un point d'ébullition de 250 à 500°C) et que les composés diaromatiques (alkylquinoléines, $C_nH_{2n-11}N$) et triaromatiques (alkylbenzoquinoléines, $C_nH_{2n-17}N$) prédominent.

Les données quantitatives concernant l'extraction sont mentionnées dans le Tableau II. L'azote basique représente environ 56% de l'azote total en prenant une masse moléculaire moyenne des composés azotés basiques égale à 200 (masse moléculaire de C₅-alkylquinoléines: 199).

Les pics qui sont numérotés sur le chromatogramme de la Fig. 2 sont partiellement ou complètement identifiés; les noms de ces composés sont indiqués sur le Tableau III, les structures et les systèmes de numération des composés parents sont indiqués sur la Fig. 1.

Composés de composition $C_nH_{2n-5}N$. Ces composés monoaromatiques sont des alkylpyridines, de poids moléculaire compris entre 149 ($C_{10}H_{15}N$, C_5 -alkyl-) et 219

TABLEAU II

DONNEES QUANTITATIVES DE L'EXTRACTION DES COMPOSES AZOTES BASIQUES ET NON BASIQUES A PARTIR DE 10 g DE DAO R0

Azote total dans DAO R0: 4200 ppm (par analyse élémentaire).

	Poids après extraction et fractionnement CL (g)	Azote récupéré* (ppm)	Taux de récupération* (%)
Fraction azotée basique	0,334**	2340	55,7
Fraction azotée non basique	0,183**	1120	26,6

* Par calcul (cf. Résultats et discussion).

* Par pesée.

Pyridine

Quinoléine

Aniline

Benzo[h]quinoléine

Fig. 1. Structures et systèmes de numération des composés parents azotés basiques, identifiés dans le DAO R0 et DAO R16.

 $(C_{15}H_{25}N, C_{10}-alkyl-)$; leur abondance relative est maximale pour les C_{6-8} -alkylpyridines. Les C_{0-4} -alkylpyridines sont absentes de cette fraction. Les isomères théoriquement possibles pour les C_{5-10} -alkylpyridines sont nombreux (de l'ordre de quelques dizaines par masse moléculaire), cependant pour chaque masse seuls quelques composés sont présents. La CG-SM a permis d'identifier partiellement un certain nombre de composés (Fig. 2 et Tableau III). Les composés identifiés présentent des substitutions en toute position sur le cycle, les substituants étant: méthyl- (en toute position), éthyl- (en position 2, 3 ou/et 5) et propyl- (en 3 ou 5). Cependant les composés ayant des substituants éthyle ou propyle en position 3 ou/et 5 sont les plus abondants.

Composés de composition $C_nH_{2n-11}N$. Ces composés diaromatiques sont principalement les alkylquinoléines et constituent les composés les plus abondants de la

Fig. 2. Chromatogramme de l'extrait basique du DAO R0. Conditions CG: colonne capillaire OV 73, longueur 56 m, diamètre interne 0,29 mm, épaisseur de film 0,15 μ m, température programmée de 50 à 250°C à 2,2°C/min. Pour l'identification des pics voir Tableau III. Les flèches désignent les temps de rétention de la quinoléine (Q), acridine (A) et benzo[a]acridine (b[a]A). ATA: Azaarènes tétraaromatiques.

TABLEAU III

COMPOSES AZOTES BASIQUES IDENTIFIES DANS L'ECHANTILLON DAO R0

No. de pic	Z	Masse moléculaire	Formule brute	Structure	Méthodes d'identification
1 et 2	- 5	149	C10H15N	C ₅ -Alkylpyridines	CG-SM
3	-11	143	C ₁₀ H ₉ N	2-Méthylquinoléine	CG, CG-SM
4	-11	143	C ₁₀ H ₉ N	8-Méthylquinoléine	CG, CG-SM
5	-11	143	C ₁₀ H ₉ N	Méthylquinoléines	CG-SM
6, 7 et 8	- 5	149	C10H15N	C ₅ -Alkylpyridines	CG-SM
9	-11	157	$C_{11}H_{11}N$	C ₂ -Alkylquinoléine	CG-SM
10	- 5	163	$C_{11}H_{17}N$	C ₆ -Alkylpyridine	CG-SM
11	-11	157	C ₁₁ H ₁₁ N	3 ou 5 ou 6-éthylquinoléine	CG-SM
12	- 5	163	$C_{11}H_{17}N$	C ₆ -Alkylpyridine	CG-SM
13	-11	157	$C_{11}H_{11}N$	Diméthylquinoléine	CG-SM
	- 5	163	$C_{11}H_{17}N$	3 ou 5 propyl, méthylpyridine	
14	- 5	163	C11H17N	2-Ethyl, tétraméthylpyridine	CG-SM
15	-11	157	CuHuN	4-Ethylquinoléine	CG-SM
	- 5	163	$C_{11}H_{17}N$	C ₆ -Alkylpyridine	CG-SM
16	-11	157	$C_{11}H_{11}N$	Diméthylquinoléine	CG-SM
	- 5	163	$C_{11}H_{17}N$	C ₆ -Alkylpyridine	CG-SM
17	- 5	163	$C_{11}H_{17}N$	3 ou 5 éthyl, tétraméthylpyridine	CG-SM
18	-11	157	$C_{11}H_{11}N$	Diméthylquinoléine	CG-SM
19	-11	157	$C_{11}H_{11}N$	C ₂ -Alkylquinoléine	CG-SM
20	-11	171	C ₁₂ H ₁₃ N	C ₃ -Alkylquinoléine	CG-SM
21	-11	157	$C_{11}H_{11}N$	Diméthylquinoléine	CG-SM
22	- 5	163	$C_{11}H_{17}N$	C ₆ -Alkylpyridine	CG-SM
23	- 5	177	$C_{12}H_{19}N$	C ₇ -Alkylpyridine	CG-SM
24	- 5	163	$C_{11}H_{17}N$	C ₆ -Alkylpyridine	CG-SM
25	- 5	177	$C_{12}H_{19}N$	C ₇ -Alkylpyridine	CG-SM
26	- 5	177	$C_{12}H_{19}N$	3,5-Propyléthyldiméthylpyridine	CG-SM
	-11	171	$C_{12}H_{13}N$	C ₃ -Alkylquinoléine	CGSM
27	- 5	177	$C_{12}H_{19}N$	C_7 -Alkylpyridine	CG-SM
28	-11	171	$C_{12}H_{13}N$	(2 ou 8)-Ethyl, méthylquinoléine	CG-SM
29	- 5	177	$C_{12}H_{19}N$	C ₇ -Alkylpyridine	CG-SM
30	-11	171	$C_{12}H_{13}N$	(2 ou 8)-Ethyl, méthylquinoléine	CG-SM
	- 5	177	$C_{12}H_{19}N$	(3 ou 5)-Ethyl, C ₅ -alkylpyridine	CG-SM
31	- 5	177	$C_{12}H_{19}N$	C ₇ -Alkylpyridine	CG-SM
32	-11	171	$C_{12}H_{13}N$	Triméthylquinoléines	CG-SM
33	- 5	177	$C_{12}H_{19}N$	(3 ou 5)-Ethyl, C ₅ -alkylpyridine	CG-SM
34, 35 et 36	-11	171	$C_{12}H_{13}N$	Triméthylquinoléines	CG-SM
37	- 5	177	$C_{12}H_{19}N$	(3 ou 5)-Ethyl, C ₅ -alkylpyridine	CG-SM
38	- 5	177	$C_{12}H_{19}N$	C7-Alkylpyridine	CG-SM
39	-11	171	C12H13N	Triméthylquinoléine	CGSM
40	- 5	177	C12H19N	2-Isopropyl, C ₄ -alkylpyridine	CG-SM
41	- 5	191	$C_{13}H_{21}N$	C ₈ -Alkylpyridines	CGSM
42	-11	171	$C_{12}H_{13}N$	Triméthylquinoléine	CG-SM
43	- 5	191	$C_{13}H_{21}N$	C ₈ -Alkylpyridine	CG-SM
44	-11	185	C13H15N	2-Ethyl, diméthylquinoléine	CG-SM
45	- 5	191	$C_{13}H_{21}N$	(3 ou 5)-Propyl, C ₅ -alkylpyridine	CG-SM
46	-11	185	$C_{13}H_{15}N$	8-Ethyl, diméthylquinoléine	CG-SM
	- 5	191	$C_{13}H_{21}N$	C ₈ -Alkylpyridine	CG-SM
47 et 48	-11	185	$C_{13}H_{15}N$	C ₄ -Alkylquinoléines	CG-SM
49	- 5	191	$C_{13}H_{21}N$	(3 ou 5)-Propyl, Cs-alkylpyridine	CG-SM
50, 51 et 52	- 5	191	$C_{13}H_{21}N$	C ₈ -Alkylpyridines	CG-SM

TABLEAU III (suite)

No. de pic	Z	Masse moléculaire	Formule brute	Structure	Méthodes d'identification
53	-11	199	C ₁₄ H ₁₇ N	8-Isopropyl, diméthylquinoléine	CG-SM
54	- 5	191	C13H21N	8-Isopropyl, diméthylquinoléine	CG-SM
55	-11	199	C14H17N	8-Isopropyl, diméthylquinoléine	CG-SM
56 et 57	- 5	205	C14H23N	C ₉ -Alkylpyridines	CG-SM
58	-11	199	C14H17N	8-Isopropyl, diméthylquinoléine	CG-SM
59	- 5	205	C14H23N	C ₉ -Alkylpyridine	CG-SM
60	-11	199	$C_{14}H_{17}N$	8-Isopropyl, diméthylquinoléine	CG-SM
61	- 5	205	C14H23N	C ₉ -Alkylpyridine	CG-SM
62	- 5	219	C15H25N	C ₁₀ -Alkylpyridine	CGSM
63	-11	199	C14H17N	2-Ethyl, triméthylquinoléine	CG-SM
64	- 5	205	C14H23N	C9-Alkylpyridines	CG-SM
65	-11	199	$C_{14}H_{17}N$	2-Ethyl, triméthylquinoléine	CG-SM
66	- 5	219	C15H25N	C ₁₀ -Alkylpyridine	CG-SM
67	-11	213	C15H19N	8-Isopropyl, C ₃ -alkylquinoléine	CG-SM
68	-11	213	C13H19N	8-Ethyl, C ₄ -alkylquinoléine	CG-SM
69	- 5	219	C15H25N	C ₁₀ -Alkylpyridine	CG-SM
70	-11	199	C14H17N	Pentaméthylquinoléine	CG-SM
71	-11	199	$C_{14}H_{17}N$	Pentaméthylquinoléine	CG-SM
72	-11	199	$C_{14}H_{17}N$	Pentaméthylquinoléine	CG-SM
73	-11	199	$C_{14}H_{17}N$	8 (ou 2)-Ethyl, triméthylquinoléine	CG-SM
74	-11	199	$C_{14}H_{17}N$	C ₅ -Alkylquinoléine	CG-SM
75 et 76	-11	213	C15H19N	C ₆ -Alkylquinoléines	CG-SM
77	-11	213	C15H19N	8-Isopropyl, éthyl, méthylquinoléine	CG-SM
78	-11	213	C15H19N	Ethyl, C ₄ -alkylquinoléine	CG-SM
79	-11	213	C15H19N	C ₆ -Alkylquinoléines	CG-SM
80	-11	213	C15H19N	8-Isopropyl, 2-éthyl, méthylquinoléi	- CG-SM
Q1	_11	213	C.H.N	ac 8-Ethyl éthyl diméthylquinoléine	CG-SM
87	-11	213	C.H.N	Ethyl, C., alkylauinoléine	CG_SM
82	-11	213	C.H.N	8-Isopropul Calkylquinoláine	CG_SM
84	-11	213		8-Isopropyl, C4-aikylquinoléine	CG_SM
85	-17	103	C.H.N	2-Méthylbenzolklauinoléine	CG CG_SM
86	-11	227	C.H.N	2-Methylochzol/jquilloleme 8-Jeopropyl tétraméthylguingléine	CO, CO-SM
80 97	-11	227		4-n Bronyl 2 (ou 8) athyl	CG-SM
87	-11	<i>LL</i> 1	C1611211	méthyllquinoléine	CO-5M
88	-11	227	$C_{16}H_{21}N$	(Pas en 2 ou 8)-dipropylquinoléine	CG-SM
89	-11	227	$C_{16}H_{21}N$	8-Isopropyl, tétraméthylquinoléine	CG-SM
90	-11	227	$C_{16}H_{21}N$	8-Isopropyl, tétraméthylquinoléine	CG-SM
91	-11	227	$C_{16}H_{21}N$	C7-Alkylquinoléine	CG-SM
92	-11	227	$C_{16}H_{21}N$	8-Isopropyl, tétraméthylquinoléine	CG–SM
93 et 94	-11	227	C16H21N	C7-Alkylquinoléines	CG–SM
95	-11	241	C17H23N	(Pas en 2 ou 8)-éthyl C ₆ -alkylquino léine	- CG-SM
96	-11	227	C16H21N	Hexaméthylquinoléine	CG-SM
97	-11	241	C ₁₇ H ₂₃ N	8-Butyl, C ₄ -alkylquinoléine	CG-SM
98	-11	241	$C_{17}H_{23}N$	C ₈ -Alkylquinoléine	CG-SM
99	-11	227	C ₁₆ H ₂₁ N	Hexaméthylquinoléine	CG-SM
100, 101 et 102	-11	241	$C_{17}H_{23}N$	C ₈ -Alkylquinoléines	CG-SM
103	-17	207	C15H13N	C ₂ -Alkylbenzoquinoléine	CG-SM
104	-11	241	$C_{17}H_{23}N$	C ₈ -Alkylquinoléine	CG-SM
105	-17	207	C15H13N	C ₂ -Alkylbenzoquinoléine	CG-SM
106	-11	227	C17H23N	Heptaméthylquinoléine	CG-SM

(Continué sur la p. 96)

No. de pic	Z	Masse moléculaire	Formule brute	Structure	Méthodes d'identification
107	-17	207	C15H13N	Diméthylbenzoquinoléine	CG-SM
108	-17	207	C15H13N	Diméthylbenzoquinoléine	CG-SM
109	-17	207	C15H13N	2,4-Diméthylbenzo[h]quinoléine	CG, CG-SM
110	-11	241	C17H23N	C ₈ -Alkylquinoléine	
111	-17	207	C15H13N	2,3-Diméthylbenzo[h]quinoléine	CG, CG-SM
112	-17	207	C15H13N	Diméthylbenzoquinoléine	CG-SM
113, 114 et 115	-17	221	C16H15N	Triméthylbenzoquinoléines	CG-SM
116	-11	241	$C_{17}H_{23}N$	C ₈ -Alkylquinoléines	CG-SM
117	-17	221	C16H15N	Triméthylbenzoquinoléine	CG-SM
118	-11	241	C17H23N	C ₈ -Alkylquinoléine	CG-SM
119	-17	221	C16H15N	Triméthylbenzoquinoléines	CG-SM
120	-11	241	$C_{17}H_{23}N$	C ₈ -Alkylquinoléine	CG-SM
	-17	221	C16H13N	Triméthylbenzoquinoléine	CG-SM
121	-11	241	$C_{17}H_{23}N$	8-Ethyl, C ₆ -alkylquinoléine	CG-SM
122 à 126	-17	221	C ₁₆ H ₁₅ N	Triméthylbenzoquinoléines	CG-SM
127 et 128	-11	241	C17H23N	C ₈ -Alkylquinoléines	CG-SM
129	-17	221	C16H15N	2,4,6-Triméthylbenzo[h]quinoléin	e CG, CG-SM
130 et 131	-11	241	$C_{17}H_{23}N$	C _s -Alkylquinoléines	CG-SM
132 à 134	-17	221	C16H15N	Triméthylbenzoquinoléines	CG-SM
135	-11	241	C17H23N	C ₈ -Alkylquinoléine	CG-SM
136	-17	221	C16H13N	Triméthylbenzoquinoléine	CG-SM
137	-17	235	C17H17N	C ₄ -Alkylbenzoquinoléines	CG-SM
138	-11	255	C ₁₈ H ₂₅ N	C ₉ -Alkylquinoléine	CG-SM
139	-17	235	$C_{17}H_{17}N$	C ₄ -Alkylbenzoquinoléine	CG-SM
140	-17	255	C ₁₈ H ₂₅ N	C ₉ -Alkylquinoléine	CG-SM
141	-17	235	$C_{17}H_{17}N$	C ₄ -Alkylbenzoquinoléine	CG-SM
142 à 147	-11	255	C18H25N	C ₉ -Alkylquinoléines	CG-SM
148 et 149	-17	249	C18H19N	C ₅ -Alkylbenzoquinoléines	CG-SM

TABLEAU III (suite)

fraction basique de DAO R0. Leur poids moléculaire va de 143 ($C_{10}H_9N$, méthylquinoléine) à 255 ($C_{18}H_{25}N$, C_9 -alkylquinoléine). Leur abondance relative est maximale pour les C_{4-7} -alkylquinoléines. Les alkylisoquinoléines (série isomère) sont probablement des constituants mineurs (ou absents) comme c'est le cas dans les pétroles bruts. Les isomères géométriques théoriquement existants sont nombreux (7 méthylquinoléines, 28 C_2 -alkylquinoléines ...), cependant seul un petit nombre parmi eux est présent. La substitution d'un alkyle en position 2 ou/et 8 est la plus courante. Cependant des composés substitués en une autre position sont identifiés. En sus des composés polyméthylés (C_1 à C_7), les substituants sont exclusivement des mono- et diéthyle, propyle, isopropyle et butyle. Une caractéristique essentielle est la présence de séries pseudo-homologues, les composés ayant surtout comme substituants l'éthyle en position 2 ou/et 8 et l'isopropyle en position 8. Les pseudo-homologues de la 8isopropylquinoléine sont parmi les composés majeurs de la fraction basique. Cette distribution particulière rapproche le DAO R0 d'un pétrole de Californie (Midway) étudié préalablement, et le différencie de la plupart des autres pétroles bruts⁷.

Composés de composition $C_n H_{2n-17}N$. Ces composés triaromatiques sont principalement des benzoquinoléines et constituent la deuxième classe de composés abondants dans le DAO R0. Leur poids moléculaire va de 193 ($C_{14}H_{11}N$, méthylbenzoquinoléine) à 263 ($C_{19}H_{21}N$, C_6 -alkylbenzoquinoléines) et leur abondance relative est maximale pour les C_{3-4} -alkyl benzoquinoléines. Un petit nombre parmi les isomères géométriques théoriquement existants (qui sont nombreux: 8 benzoquinoléines, 68 méthylbenzoquinoléines, 350 C_2 -alkylbenzoquinoléines), est présent. Les benzoquinoléines non substituées sont absentes. Certaines alkylbenzo[*h*]quinoléines sont complètement identifiées par co-injection en CG avec les composés de référence (Fig. 2 et Tableau III). La CG-SM indique qu'en grande majorité ces alkylbenzoquinoléines sont méthylées (mono-, di-, tri-, tétraméthyle) et substituées en position α de l'atome d'azote.

Composés de composition $C_nH_{2n-23}N$. Les azaarènes tétracycliques constituent une série homologue présente dans la fraction. L'identification complète ou même partielle est difficile à réaliser⁸ compte tenu du grand nombre d'isomères théoriquement existants et du manque de composés de référence. Ainsi sur le chromatogramme de la Fig. 2 seule la zone de rétention de ces composés a été indiquée.

Composés de composition intermédiaire (Z = -7, -9, -13, -15, -19, -21). Ce sont des constituants mineurs dans la fraction basique du DAO R0. Quelques composés ayant des substituants méthyles a été détectés, cependant aucun pic correspondant à ces séries n'a été attribué sur le chromatogramme de la Fig. 2 en raison des très faibles concentrations observées.

Echantillon hydrotraité DAO R16

La caractérisation de cette fraction par CG et CG-SM montre que les composés ont entre 1 et 4 cycles aromatiques (correspondant à un poids moléculaire allant de 90 jusqu'à 300 et un point d'ébullition de 200 à 500°C) où les composés monoaromatiques (alkylanilines, $C_nH_{2n-5}N$). diaromatiques (alkylquinoléines, $C_nH_{2n-11}N$) et triaromatiques (alkylbenzoquinoléines, $C_nH_{2n-17}N$) prédominent.

Les données quantitatives indiquent que l'azote basique n'est globalement pas touché par l'hydrotraitement et qu'il représente 50 à 55% de l'azote total du DAO R16.

Les pics qui sont numérotés sur le chromatogramme de la Fig. 3 sont partiellement ou complètement identifiés et les noms de ces composés sont indiqués sur le Tableau IV.

Composés de composition $C_nH_{2n-5}N$. Les alkylpyridines réduites à l'état de traces sont difficilement détectables. Les alkylanilines (composés isomassiques) sont apparues. La structure et le système de numérotation sont indiqués sur la Fig. 1. Leur poids moléculaire va de 107 (C_7H_9N , méthylaniline) à 191 ($C_{13}H_{21}N$, C_7 -al-kylanilines) et leur abondance relative est maximale pour C_{2-4} -alkylanilines (Fig. 3 et Tableau IV). Les composés les plus abondants ont été identifiés totalement ou partiellement. Les substituants des composés identifiés sont: mono-, di-, triméthyle, mono- et diéthyle, propyle et butyle. Les substitutions en positions 2 et 2,6 sont les plus courantes (composés majeurs). Cela est dû au mécanisme d'hydrogénation catalytique des benzologues supérieurs de la pyridine et du pyrrole, dont les alkylanilines produites constituent une étape intermédiaire³⁰⁻⁴¹.

Les alkylpyridines présentes dans le DAO R0 ont subi une hydrodéazotation. L'hydrodéazotation catalytique de pyridines a été étudié par plusieurs auteurs³⁰⁻³⁴. Il en ressort que l'hydrodéazotation des alkylpyridines présente moins de difficultés que celle de leurs benzologues supérieurs surtout lorsqu'elles sont substituées en position 3 et/ou 5 (lit. 34) (c'est le cas dans DAO R0).

Composés de composition $C_n H_{2n-11}N$. Les alkylquinoléines constituent les composés majeurs de la fraction basique du DAO R16. Leur poids moléculaire va de 129 (C₉H₇N, quinoléine) à 241 (C₁₇H₂₃N, C₈-alkylquinoléines) et leur abondance est maximale pour C₄₋₇-alkylquinoléines. Les alkylisoquinoléines sont absentes comme l'indique l'absence de l'isoquinoléine (cf. Fig. 4: un seul pic à la masse 129) et ceci confirme leur absence dans le DAO R0. Les positions occupées par les substituants et la nature de ceux ci sont sensiblement les mêmes que dans le DAO R0. Cependant les composés avant des substituants en position 2 et/ou 8 sont de loin les plus abondants et résistent à l'hydrotraitement (Fig. 4 et lit. 17). Cette résistance à l'hydrotraitement est en relation avec l'encombrement stérique de l'atome d'azote, qui ne favorise pas la première étape de l'hydrodéazotation catalytique (qui est suivie d'une étape intermédiaire pendant laquelle sont produites les alkylanilines^{33,35,36}) et indique une stabilité thermodynamique, qui pourrait expliquer l'abondance des quinoléines et benzoquinoléines α -méthylées dans les pétroles bruts. Les composés comportant de substituants méthyles sont parmi les plus abondants (Fig. 4). Certains d'entre eux sont vraisemblablement produits par craquage sans hydrodéazotation des composés substitués par des chaînes alkyles. Cela explique la présence (production) des quinoléines faiblement alkylées ou méthylées dans le DAO R16 (Fig. 4: quinoléine, mono-, di-, et triméthylquinoléines).

Composés de composition $C_nH_{2n-17}N$. Les benzoquinoléines constituent la troisième classe de composés abondants dans le DAO R16. Leur poids moléculaire va de 193 à 249 (C₅-alkylbenzoquinoléines) et leur abondance est maximale pour les C₂-alkylbenzoquinoléines. Leur distribution n'est que très peu modifiée par rapport à celle observée dans le DAO R0 (Fig. 5).

Dans le DAO R16 tous les composés sont méthylés et résistent à l'hydrotraitement et plus particulièrement les composés ayant un substituant en position α de l'atome d'azote (Fig. 5 et lit. 17).

Composés de composition $C_nH_{2n-23}N$. Leur distribution a été touchée par l'hydrotraitement. Ils sont probablement à l'origine de la production d'alkylanilines et de quinoléines faiblement alkylées ou méthylées dans le DAO R16.

La distribution des composés de structure intermédiaire ne semble pas avoir subi des modifications notables et facilement interprétables. Les composés partiellement hydrogénés sont mineurs dans la fraction.

Composés azotés non basiques

Echantillon DAO R0. Les donnés quantitatives de l'extraction sont mentionnées dans le Tableau II. L'azote non basique représente environ 26,6% de l'azote total si la masse moléculaire moyenne des composés azotés non basiques de la fraction est prise égale à 230 (masse moléculaire des méthylbenzocarbazoles 231) compte tenu de comparaison des abondances relatives de différentes familles de composés de la fraction effectuée par CG-SM.

Les composés azotés non basiques identifiés sont tous des dérivés alkylés et des benzologues supérieurs du carbazole (cf. Tableau V). La nomenclature est indiquée en Fig. 6 et le chromatogramme de la fraction est présenté en Fig. 7.

Dans cette fraction, des composés non azotés ont été identifiés par comparaison de traces chromatographiques parallèles FID et NPD et par CG-SM. Ils sont localisés au début du chromatogramme de la Fig. 7. Ce sont d'une part des composés

TABLEAU IV

COMPOSES AZOTES BASIQUES IDENTIFIES DANS L'ECHANTILLON HYDROTRAITE DAO R16

No. de pic	Z	Masse moléculaire	Formule brute	Structure	Méthodes d'identification
1	- 5	107	C7H9N	2-Méthylaniline	CG, CG-SM
2	- 5	107	C7H9N	3-Méthylaniline	CG, CG-SM
3	- 5	121	$C_{B}H_{11}N$	2-Ethylaniline	CG, CG-SM
4	- 5	121	C ₈ H ₁₁ N	2,6-Diméthylaniline	CG, CG-SM
5	- 5	121	$C_8H_{11}N$	2,5-Diméthylaniline	CG, CG-SM
6	- 5	121	C ₈ H ₁₁ N	2,3-Diméthylaniline	CG, CG-SM
7	- 5	135	C9H13N	C ₃ -Alkylaniline	CG, CG-SM
8	-11	129	C _o H ₇ N	Ouinoléine	CG, CG-SM
9	- 5	135	$C_9H_{13}N$	2-Propylaniline	CG, CG-SM
	_				acétylation
10	- 5	135	C ₉ H ₁₃ N	(2-)Ethylméthylaniline	CG, CG-SM
11	- 5	135	Callian	(2-)Ethylméthylaniline	CG. CG-SM
	5	100	09111311	(2)211911101191111110	acétylation
12	- 5	135	$C_9H_{13}N$	2,4,6-Triméthylaniline	CG, CG-SM
13 et 14	- 5	135	C9H13N	C ₃ -Alkylanilines	CG, CG-SM
15 et 16	- 5	135	C9H13N	Triméthylaniline	CG, CG-SM
17	- 5	149	C10H15N	Diéthylaniline	CG, CG-SM
18	-11	143	C10HoN	2-Méthylquinoléine	CG, CG-SM
19	-11	143	C ₁₀ H ₉ N	8-Méthylquinoléine	CG, CG-SM
20	- 5	149	C10H15N	(2-)Ethyl, éthylaniline	CG, CG-SM
21	- 5	149	C10H15N	2-Propyl, méthylaniline	acétylation CG, CG–SM
22	- 5	149	C10H15N	(2-)Ethyl, éthylaniline	acetylation CG, CG-SM
			- 1015-		acétylation
23	-11	143	C10H9N	5 ou 6 ou 7-méthylquinoléine	CG-SM
24	- 5	149	C10H15N	(2-)Ethyl, éthylaniline	CG, CG-SM
25	- 5	1 49	C10H15N	Propyl, méthylaniline	acetylation CG, CG-SM
	-11	143	CtoHoN	Méthylauinoléine	CG-SM
26	- 5	149	C10H13N	C₄-Alkylaniline	CG, CG-SM
				· · · · ·	acétylation
27	-11	143	C10H9N	Méthylquinoléine	CG-SM
28	-11	157	$C_{11}H_{11}N$	2,8-Diméthylquinoléine	CG, CG-SM
29	- 5	149	C10H15N	(2-)Ethyl, éthylaniline	CG, CG–SM acétylation

TABLEAU IV (suite)

No. de pic	Z	Masse moléculaire	Formule brute	Structure	Méthodes d'identification
30	-11	143	C10H9N	4-Méthylquinoléine	CG, CG-SM
31	-11	143	C10H9N	Méthylquinoléines	CG-SM
	- 5	149	C10H15N	C ₄ -Alkylanilines	CG, CG–SM
	- 5	163	C ₁₁ H ₁₇ N	C ₅ -Alkylaniline	acetylation CG, CG–SM
32	- 5	163	C11H17N	2-Propyl, C ₂ -alkylaniline	acétylation CG, CG-SM
			<i></i>		acetylation
33	-11	157	$C_{11}H_{11}N$	8-Ethylquinoleine	CG, CG-SM
34	- 5	163	C ₁₁ H ₁₁ N	Propyl, C ₂ -alkylaniline	CG, CG-SM acétylation
35	- 5	163	C ₁₁ H ₁₇ N	C ₅ -Alkylaniline	CG, CG–SM acétylation
36	-11	157	$C_{11}H_{11}N$	Diméthylquinoléines	CG-SM
37	- 5	177	$C_{12}H_{19}N$	Butyl, C ₂ -alkylaniline	CG, CG–SM
				• • •	acétylation
38	-11	157	$C_{11}H_{11}N$	2,6-Diméthylquinoléine	CG, CG-SM
39	- 5	163	C11H17N	Butyl, méthylaniline	CG, CG-SM
					acétylation
40	- 5	163	$C_{11}H_{17}N$	Propyl, diméthylaniline	CG, CG-SM
	-				acétylation
41	-11	157	C ₁₁ H ₁₁ N	2.4-Diméthylquinoléine	CG, CG-SM
42	-11	157	C ₁₁ H ₁₁ N	2.3-Diméthylquinoléine	CG, CG-SM
43	- 5	177	C ₁ ,H ₁₀ N	C ₆ -Alkylaniline	CG, CG-SM
44	- 5	177	CuaHuaN	C _c -Alkylanilines	acétylation CG. CG-SM
••	•		-1219-1		acétylation
45	-11	171	Cultur	Triméthylavinoléine	CG-SM
46	- 5	177	Culture	CAlkylaniline	CG CG-SM
10	5		U12-191		acétylation
47	- 5	177	C12H19N	C ₆ -Alkylanilines	CG, CG-SM
48	-11	171	C.H.N	Méthyl-éthylouipoléine	CG-SM
49	-11	171	Culture	Méthyl 8 (ou 2) éthylquinoléine	CG-SM
50	-11	171	CuHuN	Triméthylquinoléine	CG-SM
50 51 et 52	- 5	177	CuHuN	CAlkylanilines	CG CG_SM
51 00 52	- 5	1//	C12111914	Ce-rikylammes	acétulation
53	-11	171	C ₁₂ H ₁₃ N	Méthyl, 8 (ou 2)- éthylauinoléine	CG-SM
54	-11	171	CoHoN	Triméthylauinoléine	CG-SM
55	- 5	191	CuHaN	CAlkylanilines	CG. CG-SM
55	2		013112111	0) i ===j ======0	acétylation
56	-11	185	Collern	2 (ou 8)-Ethyldiméthylquinoléine	CG-SM
57	-11	171	CuHuN	Triméthylquinoléine	CG-SM
58 et 59	- 5	191	C12H21N	C ₁ -Alkylanilines	CG. CG-SM
60 et 61	_ 11	171	C. U. N	Triméthylauinoléine	acétylation
62	_11	185	C.H.N	2-Ethyl diméthylavinaléine	CG_SM
63	_11	185	C.H.N	2-Buryi, dinethylquinoleine	CG_SM
64	_11	171	C.H.N	C. Alkylavinoléine	CG_SM
65	-11	185	C ₁₂ H ₁₃ N	3-mayiquilloitillo 8-Isannanyiméthylauinaléine	CG-SM
66	-11	171	$C_{12}H_{13}N$	Triméthylquinoléine	CG-SM

101

(Continué sur la p. 102)

TABL	EAU	IV	(suite))
------	-----	----	---------	---

No. de pic	Z	Masse moléculaire	Formule brute	Structure	Méthodes d'identification
67a 67b	-11 - 5	185 191	$C_{13}H_{15}N$ $C_{12}H_{21}N$	C ₄ -Alkylquinoléine C ₇ -Alkylquinoléine	CG-SM CG. CG-SM
•••	-		-1321-		acétylation
68	-11	185	C13H15N	Tétraméthylquinoléine	CG-SM
69	-11	185	C13H15N	C ₄ -Alkylquinoléines	CG-SM
70	-11	199	$C_{14}H_{17}N$	8-Isopropyldiméthylquinoléine	CG-SM
71	-11	185	C13H15N	Tétraméthylquinoléines	CG-SM
72	-11	199	$C_{14}H_{17}N$	8-Isopropyldiméthylquinoléine	CG-SM
73	-11	185	$C_{13}H_{15}N$	Tétraméthylquinoléine	CG-SM
74	-11	199	$C_{14}H_{17}N$	8-Isopropyldiméthylquinoléine	CG-SM
75	-11	185	$C_{13}H_{15}N$	Tétraméthylquinoléine	CG-SM
76	-11	199	$C_{14}H_{17}N$	8-Ethyl, C ₃ -alkylquinoléine	CG-SM
77	-11	185	$C_{13}H_{15}N$	Ethyl, diméthylquinoléine	CG-SM
78	-11	185	$C_{13}H_{15}N$	Tétraméthylquinoléine	CG-SM
79a	-11	199	$C_{14}H_{17}N$	C ₅ -Alkylquinoléine	CG-SM
79b	-11	213	$C_{15}H_{19}N$	C ₆ -Alkylquinoléine	CG-SM
80	-11	213	$C_{15}H_{19}N$	8-Isopropyl,2-éthylméthylquinoléine	CG-SM
81a	-11	227	$C_{16}H_{21}N$	Propyl, C ₄ -alkylquinoléine	CG-SM
815	-11	213	$C_{15}H_{19}N$	Ethyl, C ₄ -alkylquinoleine	CG-SM
82	-11	199	$C_{14}H_{17}N$	8-Isopropyldimethylquinoleine	CG-SM
83a	-11	213	$C_{15}H_{19}N$	8-Butyl, C ₂ -alkylquinoléine	CG-SM
836	-11	213	$C_{15}H_{19}N$	Ethyl, C ₄ -alkylquinoleine	CG-SM
84a	-11	213	$C_{15}H_{19}N$	8-Isopropyltriméthylquinoléine	CG-SM
84b	-11	213	$C_{15}H_{19}N$	Ethyl, C ₄ -alkylquinoleine	CG-SM
85	-11	199	$C_{14}H_{17}N$	Pentamethylquinoleine	CG-SM
86	-11	213	C ₁₅ H ₁₉ N	C ₆ -Alkylquinoleines	CG-SM
87	-11	199	$C_{14}H_{17}N$	Pentaméthylquinoléines	CG-SM
88	-11	227	$C_{16}H_{21}N$	8-Isopropyl, tetramethylquinoleine	CG-SM
89	-11	213	$C_{15}H_{19}N$	Ethyl, tétraméthylquinoléine	CG-SM
90	-17	193	$C_{14}H_{11}N$	2-Methylbenzo[h]quinoleine	CG, CG-SM
91		213	$C_{15}H_{19}N$	Ethyl, tetramethylquinoleine	CG-SM
92a	-11	227	$C_{16}H_{21}N$	C ₇ -Alkylquinoleine	CG-SM
920	-11	227	$C_{16}H_{21}N$	8-Isopropyl-C ₄ -alkyiquinoleine	CG-SM
93a	-11	213	$C_{15}H_{19}N$	Ethyl, tetramethylquinoleine	CG-SM
930	-11	227	$C_{16}H_{21}N$	8-Isopropyi-C ₄ -aikyiquinoleine	CG-SM
94	-11	227	$C_{16}H_{21}N$	Propyl, C_4 -aikylquinoleine	CG-SM
95	-11	227	$C_{16}H_{21}N$	C ₇ -Aikyiquinoleine	CG-SM
90 CL 97	-11	213	$C_{15}H_{19}N$	nexametnyiquinoleine	CG-SM
98	-11	213	$C_{15}\Pi_{19}N$	<i>n</i> -propyltrimethylquinoleine	CG-SM
99 100	-17	207	$C_{15}H_{13}N$	Dimetnyibenzoquinoleine Heraméthylouinoléine	CG-SM
100	-11	213		n Bronyl C. alkylavinaláina	CG SM
101	-11	227	$C_{16}H_{21}N$	N-r Topyi-C4-aikyiquilloleine	CG-SM
102	-17	207	CI-HIN	2 4 Diméthylbenzo[klauinoléine	CG CG-SM
103	-17	207	CuHuN	2 3-Diméthylbenzo[k]quinoléine	CG CG-SM
105	-11	207	CuHuN	8-Isopropyl-C-alkylouinoléine	CG_SM
105	-11	277	C ₁₇ H ₂₃ N	Hentaméthylauinoléine	CG-SM
107	-11	241	C ₁₇ H ₂₁ N	8-Isopropyl-C ₄ -alkylquinoléine	CG-SM
108 à 110	-17	221	CicHicN	Triméthylbenzoguinoléine	CG-SM
111	-17	221	C ₁₆ H ₁₆ N	C ₃ -Alkylbenzoquinoléine	CG-SM
112 et 113	-17	221	CIAHIAN	Triméthylbenzoguinoléine	CG-SM
114	-17	221	CicHieN	2.4.6-Triméthylbenzolhlauinoléine	CG, CG-SM
115 à 117	-17	221	C ₁₆ H ₁₄ N	Triméthylbenzoquinoléine	CG-SM
118 à 121	-11	241	C ₁₇ H ₂₂ N	C ₈ -Alkylquinoléines	CG-SM
122	-17	235	C ₁₇ H ₁₇ N	C ₄ -Alkylbenzoquinoléines	CG-SM
123	-17	249	C ₁₈ H ₁₉ N	C ₃ -Alkylbenzoquinoléines	CG-SM
				-	

TABLEAU V

No. de pic	Z	Masse moléculaire	Formule brute	Structure	Méthodes d'identification
1	-15	167	C12H9N	Carbazole	CG, CG-SM
2	-15	181	C ₁₃ H ₁₁ N	1-Méthylcarbazole	CG, CG–SM
3	-15	181	$C_{13}H_{11}N$	3-Méthylcarbazole	CG, CG–SM
4	-15	181	C13H11N	2-Méthylcarbazole	CG, CG-SM
5	-15	181	C13H11N	4-Méthylcarbazole	CG, CG-SM
6	-15	195	$C_{14}H_{13}N$	1,8-Diméthylcarbazole	CG, CG-SM
7	-15	195	C14H13N	1,3-Diméthylcarbazole	CG, CG-SM
8	-15	195	C14H13N	1,6-Diméthylcarbazole	CG, CG-SM
9	-15	1 95	$C_{14}H_{13}N$	1,7-Diméthylcarbazole	CG, CG-SM
10	-15	195	C ₁₄ H ₁₃ N	1,4-Diméthylcarbazole	CG, CG-SM
11	-15	195	$C_{14}H_{13}N$	1,5-Diméthylcarbazole	CG, CG-SM
12	-15	195	C14H13N	3,6-Diméthylcarbazole	CG, CG-SM
13	-15	195	C ₁₄ H ₁₃ N	2,6-Diméthylcarbazole	CG, CG-SM
14	-15	195	$C_{14}H_{13}N$	2,7-Diméthylcarbazole	CG, CG-SM
				1,2-Diméthylcarbazole	CG, CG-SM
				3,5-Diméthylcarbazole	CG, CG-SM
15	-15	195	C14H13N	2,4-Diméthylcarbazole	CG, CG-SM
16	-15	195	$C_{14}H_{13}N$	2,5-Diméthylcarbazole	CG, CG-SM
17	-15	195	$C_{14}H_{13}N$	2,3-Diméthylcarbazole	CG, CG-SM
18	-15	195	$C_{14}H_{13}N$	3,4-Diméthylcarbazole	CG, CG-SM
19 à 24	-15	209	C15H15N	C ₃ -Alkylcarbazoles	CG-SM
25 et 26	-15	223	C ₁₆ H ₁₇ N	C ₄ -Alkylcarbazoles	CG-SM
27	-21	217	C16H11N	Benzo[a]carbazole	CG, CG-SM
28 et 29	-21	231	C17H13N	Méthylbenzocarbazoles	CG-SM
30	-21	217	$C_{16}H_{11}N$	Benzo[c]carbazole	CG, CG-SM
31 à 40	-21	231	$C_{17}H_{13}N$	Méthylbenzocarbazoles	CG-SM
41	-21	245	C ₁₈ H ₁₅ N	C ₂ -Alkylbenzocarbazole	CG-SM
42 et 43	-21	231	$C_{17}H_{13}N$	Méthylbenzocarbazoles	CG-SM
44 à 50	-21	245	C ₁₈ H ₁₅ N	C ₂ -Alkylbenzocarbazoles	CG-SM
51 à 56	-21	259	C19H17N	C ₃ -Alkylbenzocarbazoles	CG-SM

COMPOSES AZOTES NON-BASIQUES IDENTIFIES DANS LE DAO R0 ET L'ECHANTILLON HYDROTRAITE DAO R16

qui n'ont pas été éliminés de la fraction par le processus d'extraction des benzologues du pyrrole²³ et d'autres part certains phtalates [pics notés ph (masse 149 et 223)].

Le pyrrole et ses dérivés alkylés sont absents. Seuls certains dérivés alkylés de l'indole (C_{2-6} alkyl) sont présents à très faible concentration. Comme c'est le cas dans les pétroles bruts²³, le carbazole et les benzocarbazoles non substitués sont présents. Le carbazole et ses dérivés C_{1-4} alkylés sont présents à faible concentration. Les isomères théoriquement existants étant très nombreux (4 méthylcarbazoles, 16 diméthylcarbazoles, 4 éthylcarbazoles, 58 C₃-alkylcarbazoles, 135 C₄-alkylcarbazoles) il n'a été possible d'identifier complètement qu'une vingtaine de composés (pics 1 à 24), en raison du manque de composés de référence.

Les benzocarbazoles et leurs dérivés C_{k-4} -alkylés sont présents (pics 27 à 54) et constituent les composés les plus abondants de la fraction (maximum à C_{1-2} -alkylbenzocarbazoles). Leur abondance diminue avec leur degré d'alkylation. Les isomères théoriquement existants sont également très nombreux (3 benzocarbazoles, 30 méthylbenzocarbazoles, 135 diméthyl-, 30 éthyl-). Deux composés, le benzo[a]-

Fig. 5. Comparaison des fragmentogrammes de masse des benzoquinoléines $C_nH_{2n-17}N$ dans le DAO R0 et dans le DAO R16. Les valeurs indiquées en haut à gauche sont les intensités relatives, normalisées à 1000. Pour les conditions CG-SM voir Fig. 4. Pour l'identification des pics voir Tableau III (pour DAO R0) et Tableau IV (pour DAO R16).

Fig. 6. Structure et système de numérotation des dérivés alkylés et benzologues supérieurs du carbazole.

carbazole (pic 27) et le benzo[c]carbazole (pic 30) sont identifiés par co-injection de composés de référence, le benzo[b]carbazole est absent (seulement deux pics sur le fragmentogramme de masse m/z 217). Les dibenzocarbazoles et leurs dérivés alkylés sont pratiquement absents.

La distribution des composés azotés non basiques dans le DAO R0 est très similaire à celle qui est observée dans les autres pétroles¹⁰ et plus particulièrement dans une huile immature de Californie (Midway) datant du Pliocène⁵, à ce point près que les dibenzocarbazoles sont pratiquement absents dans le DAO R0.

Echantillon hydrotraité DAO R16

L'azote non basique n'est pas touché globalement par l'hydrotraitement: il représente environ 20 à 25% de l'azote total du DAO R16.

Le chromatogramme de cette fraction est présenté sur la Fig. 8 et le Tableau V donne les structures des composés identifiés.

La distribution globale des dérivés du carbazole et des benzocarbazoles est inchangée par rapport au DAO R0. Cependant, certaines différences confirmées par les données de CG–SM sont à signaler. L'abondance relative de composés non substitués (carbazole: pic 1, benzocarbazoles: pics 27 et 30) se trouve augmentée par rapport aux composés alkylés. Les abondances relatives des C_{2-4} -alkylcarbazoles (pics 6 à 26) et des C_3 -alkylbenzocarbazoles (pics 51 à 56) sont diminuées. Les méthylet C_2 -alkylbenzocarbazoles restent les composés plus abondants; cependant, à l'intérieur de chacune de ces séries l'abondance relative de certains composés a été modifiée.

Ces résultats, ainsi qu'un travail récent¹⁸ confirment qu'il n'est pas facile de proposer un schéma réactionnel général de l'hydrodéazotation catalytique des composés azotés non basiques et que ces composés résistent particulièrement bien à l'hydrotraitement. Des travaux étudiant la cinétique et les équilibres thermodynamiques de l'hydrodéazotation de l'indole^{36–39} et du carbazole^{36,40,41} montrent que cette hydrogénation commence par l'hétérocycle (étape lente); ensuite une amine aromatique primaire est formée (étape rapide) puis l'étape finale conduit à un hydrocarbure et l'ammoniac. Ainsi, les anilines qui sont les intermédiaires de l'hydrodéazotation viennent enrichir la fraction azotée basique.

CONCLUSION

Les résultats d'analyse permettent de dégager quelques conclusions intéressan-

tes, ayant trait d'une part à l'identité des composés azotés dans le DAO R0, et aux effets de l'hydrotraitement sur la nature et la distribution de ces composés d'autre part.

Nature des composés azotés du DAO RO

Azotés basiques

Présence de C₅- à C₁₀-alkylpyridines substituées principalement en position 3 ou/et 5. Ces composés sont mineurs.

Absence de composés non substitués (quinoléine, isoquinoléine, benzoquinoléines ...).

Absence de la série alkyl-isoquinoléine.

Présence de substituants alkyles le plus souvent en position 2 et/ou 8, mais aussi en d'autres positions sur le cycle de la quinoléine.

Abondance des dérivés de la 8-isopropylquinoléine (pseudo-homologues de C_2 - à C_4 -alkyl-).

Présence de quinoléines polyméthylées (C_1 à C_7). Présence de benzoquinoléines polyméthylées (C_1 à C_4).

Azotés non basiques

Absence du pyrrole, de l'indole et de leurs dérivés alkylés.

Présence de composés non substitués (carbazole et benzocarbazoles).

Présence de composés C_1 - à C_4 -alkylcarbazoles et C_1 - à C_4 -alkylbenzocarbazoles, probablement porteurs de substituants méthyles uniquement.

Effets de l'hydrotraitement

L'hydrotraitement subi par le DAO R0 (pour aboutir au DAO R16) constitue une étape préliminaire servant de base à l'élimination de l'azote.

Quantitativement l'azote n'est pas touché par l'hydrotraitement (Tableau I). Cependant, qualitativement nous constatons:

La formation de C_1 à C_7 -alkylanilines substituées principalement en position 2 et/ou 6, principaux intermédiaires de réaction observés.

La forte altération par l'hydrotraitement des alkylpyridines.

La production d'alkylquinoléines faiblement alkylées (C_0 à C_3) par craquage sans hydrogénation du cycle.

La meilleure résistance à l'hydrotraitement des composés azotés substitués en α de l'atome d'azote.

La faible altération de la distribution des alkylbenzoquinoléines.

La distribution peu modifiée des composés azotés non basiques.

L'absence de composés partiellement hydrogénés (intermédiaires de réaction: di-, tétra-, hexa-, octa-, decahydro-...).

RESUME

Les fractions des composés hétérocycliques azotés basiques et non basiques d'une huile lourde désasphaltée sont extraites sélectivement et étudiées à l'aide de la CG et CG-SM.

Il a été possible d'identifier complètement ou partiellement la plupart des com-

Fig. 7. Chromatogramme de la fraction des composés azotés non basiques du DAO R0. Conditions CG: colonne capillaire OV 73, longueur 40 m, diamètre interne 0,30 mm, épaisseur de film 0,15 μ m, température programmée de 100 à 270°C à 2°C/min. Pour l'identification des pics voir Tableau V. C_x-C: x-alkylcarbazoles, C_x-bC: x-alkylbenzocarbazoles, ph: phtalate.

posés de ces deux fractions. Ce sont les C_{5-10} -alkylpyridines, C_{1-9} -alkylquinoléines et C_{1-4} -alkylbenzoquinoléines pour la fraction basique et les C_{0-4} -alkylcarbazoles, et C_{0-4} -alkylbenzocarbazoles pour la fraction non basique. Seuls quelques isomères parmi les isomères théoriquement possibles sont présents dans les fractions. Des séries pseudo-homologues sont mises en évidence telle que la série de la 8-isopropyl-alkylquinoléine.

La distribution des composés azotés est étudiée après un hydrotraitement catalytique de l'huile lourde désasphaltée de départ. Les alkylpyridines disparaissent complètement et les C_{1-7} -alkylanilines apparaissent. Des modifications sont observées dans les autres séries pseudo-homologues; en particulier la résistance à l'hydrotraitement des dérivés du carbazole et des azaarènes méthylés ou alkylés en α de l'atome de l'azote se trouve confirmée.

REMERCIEMENTS

Les auteurs remercient le Dr. F. Perin (Institut Curie, Orsay, France) et le Prof. Dr. M. Kuroki (Shibaura Institute of Technology, Saitama, Japon) pour la fourniture de composés de référence. Nous remercions Mr. H. Toulhoat (Institut Français du Pétrole, Rueil-Malmaison, France) pour la fourniture des échantillons ainsi que l'Institut Français du Pétrole pour le soutien financier de ce travail et l'attribution d'une bourse à l'un d'entre nous (I.I.).

BIBLIOGRAPHIE

- 1 G. U. Dinneen et W. D. Bickel, Ind. Eng. Chem., 43 (1951) 1604.
- 2 J. W. Frankenfeld et W. F. Taylor, Amer. Chem. Soc. Div. Fuel. Chem., Preprints, 23 (1978) 205.
- 3 E. Furimsky, Erdöl Kohle, 32 (1979) 383.
- 4 E. Furimsky, Erdöl Kohle, 35 (1982) 455.
- 5 W. K. Seifert, Anal. Chem., 41 (1969) 562.
- 6 J. M. Schmitter, Thèse d'Etat, Université Pierre et Marie Curie, Paris, 1983.
- 7 J. M. Schmitter, I. Ignatiadis et P. Arpino, Geochim. Cosmochim. Acta, 67 (1983) 1975.
- 8 J. M. Schmitter, P. Garrigues, I. Ignatiadis, R. De Vazelhes, F. Perin, M. Ewald et P. Arpino, Org. Geochem., 5 (1984) sous presse.
- 9 M. Dorbon, Thèse de Docteur-Ingénieur, Université Pierre & Marie Curie, Paris, 1983.
- 10 M. Dorbon, J. M. Schmitter, P. Garrigues, I. Ignatiadis, M. Ewald, P. Arpino et G. Guiochon, Org. Geochem., 7 (1984) 111.
- 11 M. R. Guerin, C. H. Ho, T. K. Rao, B. R. Clark et K. L. Epler, Environm. Res., 23 (1980) 42.
- 12 C. H. Ho, B. R. Clark, M. R. Guerin, B. D. Barkenbus, T. K. Rao et J. L. Epler, Mutat. Res., 85 (1981) 335.
- 13 A. Picot, J. C. Gaignault et R. Glomot, Actualité Chim., No. 1 (1984) 22.
- 14 A. Picot, J. C. Gaignault et R. Glomot, Actualité Chim., No. 4 (1984) 23.
- 15 K. Hirao, Y. Shinohara, H. Tsuda, S. Fukushima, M. Takahashi et N. Ito, Cancer Res., 36 (1976) 329.
- 16 I. Ignatiadis, Thèse de 3e cycle, Université Pierre & Marie Curie, Paris, 1983.
- 17 J. M. Schmitter, I. Ignatiadis, M. Dorbon, P. Arpino, G. Guiochon, H. Toulhoat et A. Huc, Fuel, 63 (1984) 557.
- 18 M. Dorbon, I. Ignatiadis, J. M. Schmitter, P. Arpino, G. Guiochon, H. Toulhoat et A. Huc, Fuel, 63 (1984) 565.
- 19 I. Ignatiadis, J. M. Schmitter, M. Dorbon, H. Toulhoat et P. Arpino, Symposium International, Lyon, 25-27 Juin 1984: Caractérisation des Huiles Lourdes et des Résidus Pétroliers, Editions Technip, Paris, 1984, p. 423.
- 20 E. J. Gallegos, Anal. Chem., 56 (1984) 701.

CG ET CG-SM D'UNE HUILE LOURDE DESASPHALTEE

- 21 W. A. Spenser, J.F. Galobardes, M. A. Curtis et L. B. Rogers, Separ. Sci., 17 (1982) 797.
- 22 J. M. Schmitter, I. Ignatiadis, P. Arpino et G. Guiochon, Anal. Chem., 55 (1983) 1685.
- 23 M. Dorbon, J. M. Schmitter, P. Arpino et G. Guiochon, J. Chromatogr., 246 (1982) 255.
- 24 I. Ignatiadis, J. M. Schmitter et G. Guiochon, J. Chromatogr., 246 (1982) 23.
- 25 J. M. Schmitter, I. Ignatiadis et G. Guiochon, J. Chromatogr., 248 (1982) 203.
- 26 K. Blau et G. S. King (Editeurs), Handbook of Derivatives for Chromatography, Heyden, London, 1977, p. 104.
- 27 F. P. DiSanzo, J. High Resolut. Chromatogr. Chromatogr. Commun., 4 (1981) 649.
- 28 D. W. Later, M. L. Lee et B. W. Wilson, Anal. Chem., 54 (1982) 117.
- 29 L. P. Walls, dans R. C. Eldersfield (Editeur), *Heterocyclic Compounds*, Wiley-Interscience, New York, Vol. 4, 1952, p. 627.
- 30 J. Sonnemans et P. Mars, J. Catal., 31 (1973) 209.
- 31 J. Sonnemans, G. H. van de Berg et P. Mars, J. Catal., 31 (1973) 220.
- 32 A. K. Aboul-Gheit, I. K. Abdou et A. Mustafa, Egypt. J. Chem., 17 (1974) 617.
- 33 M. Cerny, Coll. Czechoslov. Chem. Commun., 44 (1979) 85.
- 34 M. J. Ledoux, Appl. Catal., 9 (1984) 31.
- 35 A. K. Aboul-Gheit, Can. J. Chem., 53 (1975) 2575.
- 36 J. F. Cocchetto et C. N. Satterfield, Ind. Eng. Chem., Process Des. Dev., 15 (1976) 272.
- 37 A. K. Aboul-Gheit, I. K. Abdou et A. Mustafa, Egypt. J. Chem., 17 (1974) 853.
- 38 A. K. Aboul-Gheit, Rev. Inst. Mex. Petr., 11 (1979) 72.
- 39 L. D. Rollman, J. Catal., 46 (1977) 243.
- 40 E. W. Stern, J. Catal., 57 (1979) 390.
- 41 V. P. Thakkar, R. M. Baldwin et R. L. Bain, Fuel Process. Technol., 4 (1980) 235.